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between RNAs or between RNA and a selected chelator Michael Yarus
in the presence of a moderately slowly exchanging metal Department of Molecular, Cellular and
like Ni2�. The simultaneous presence of the usual mono- Developmental Biology
and divalent ions would not hamper such studies, since University of Colorado
they will aid general RNA folding without effectively Boulder, Colorado 80302
competing with slow exchanging ion at its rare binding
sites. When molecules have been selected that stably
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horizontal gene transfer in bacteria. Failure or inabilityRNA Sex
to perform recombination may lead to serious draw-
backs. A case in point are animal mitochondria, which
have resorted to a number of complicated mechanisms
to compensate for deleterious effects of slowly accumu-Recombination of genetic information is a major driv-
lated point mutations in the mitochondrial genome [3].ing force in evolution, today catalyzed by protein en-

Recombination at the level of RNA has been reportedzymes. In this issue of Chemistry & Biology, a paper
for viruses [4]. Splicing of mRNAs to generate a varietyby Riley and Lehman [1] demonstrates that RNA can
of different exons from a pre-mRNA is a mechanismperform general recombination of RNA strands, thus
bearing characteristics akin to recombination, althoughsupporting the scenario of a prebiotic RNA world.
the newly generated sequence information is not
handed down to the next generation. RNA from certain

Advances in evolution have for some time been viewed organisms is capable of performing the splicing reaction
by many as a process of continuing occurrence of minor without the help of cofactors, protein or other, by se-
mutations under the constant scrutiny of selection pres- quential execution of a cleavage and a ligation reaction.
sure, blocking the amplification of deleterious mutations Incidentally, these properties present the first reported
and favoring a few punctual improvements. Besides the catalytic activities of RNA, the discovery of which, by
apparent painful slowness of such a process, mathemat- Cech and coworkers in 1982 [5], was later awarded the
ical models have clearly indicated that populations un- Nobel price.
der a certain number of individuals would suffer a contin- In their paper “Generalized RNA-Directed Recombina-
uous loss of fitness from mildly deleterious mutations tion of RNA,” Riley and Lehman [1] make use of the
rather than producing a series of champions [2]. Sexual catalytic properties of such introns to catalyze a reaction
recombination offers a way out, since “good” mutations resembling a metathesis reaction:
can also arise in, and propagate from, strains with a
number of deleterious mutations. Moreover, rather than RNA

catalysiseffecting single point mutations, recombination can gen-
erate, by error or design, sequence changes to a much
larger extent. Such events enlarge the complexity of a A-B � C-D ←→ A-D � C-B, (1)
given sequence pool by leaps and bounds in com-
parison.

All but a few of today’s replicating entities try to im- where A-B is a first RNA comprising a head and a tail
part, and C-D is a second RNA composed similarly.prove their evolutionary flexibility by employing recom-

bination, sometimes even by borrowing genetic informa- Based on previous observations by several other
groups, the authors have turned, through proficient mo-tion from outside their species, as in the case of
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Figure 1. Creation of New Functional RNA
Domains by RNA Recombination, as Exem-
plified by Riley and Lehman with the Hammer-
head Ribozyme

The sequence elements composing a ham-
merhead ribozyme are initially contained in
two separate RNA molecules. The 5� end of
the hammerhead ribozyme (red) corresponds
to the head A of RNA A-B in Equation 1, while
the 3� end of the hammerhead (blue) corre-
sponds to the tail D of RNA C-D. RNA recom-
bination generates the product A-D, a func-
tional hammerhead which can bind and
cleave a substrate RNA (black) strand in
trans.

lecular engineering, the ribozymes into tool enzymes bination has been pointed out before, the authors’ major
contribution is strictly separating the three players,that cleave the first RNA at a defined site marked by a

short recognition sequence. The (5�) head A of that first namely ribozyme function and the two crossover sub-
strate sequences, into three different molecules and ad-RNA is released from the active site, while the (3�) tail

B gets covalently bound to the ribozyme (termed PUTT, justing both of the ribozyme’s catalytic activities (PUTT
and REC) to a trans reaction. The catalytic RNA should,pick up the tail reaction). Upon addition of the second

RNA C-D, its cleavage is accompanied by the release in principle, perform multiple turnover on any pair of
RNA molecules carrying a short recognition sequence.of its tail D, while its head C is kept in the active center

to be joined with the tail B of the first RNA. Owing to In addition to its evolutionary implications, the method
developed in the article by Riley and Lehman has greatthe actual event of recombination, this reaction was

dubbed REC. The overall result is a combination of the potential to enter the field of in vitro evolution as a
ubiquitous tool. While an artificial variant of DNA recom-head of the first RNA with the tail of the second RNA.

The authors have first carried out PUTT and REC steps bination, DNA shuffling, has found successful applica-
tion in the evolution of enzymes and other proteins [6],in separate reaction tubes, thus controlling the nature

of the substrate in each step. This favored formation of a comparable recombination method at the RNA level
is still lacking. Such techniques would be particularlyC-B from A-B and C-D, since C-D was not permitted as

a substrate in the PUTT reaction. They subsequently useful for scientists working on the in vitro evolution of
new ribozymes or nucleic acid ligands (aptamers) [7].showed that PUTT and REC can be combined in a one-

pot reaction. In that case, C-D is also available for the In these fields, the goal is to identify a few sequences
with whatever properties are desired, usually startingPUTT reaction, and the complementary recombination

product must also be formed, so that the overall reaction from a pool of 1014–1015 sequences. To that end, a
selection event is engineered to retain nucleic acids withequation corresponds to that cited above (Equation 1).

A recombination product can of course reenter the the desired properties, and retained nucleic acids are
enzymatically amplified. Repetition of this scheme in-recombination cycle, and given the right proportions,

substrates A-B and C-D can be reformed from products creases the fitness of the sequence population for se-
lective retention and concurrently reduces pool com-A-D and C-B, the whole scheme being a dynamic equi-

librium. The reaction as such is energetically neutral and plexity [8].
To enrich the sequence pool and increase its com-could theoretically go on forever, if there were not a

competing hydrolytic side reaction producing single plexity, mutations can be introduced by error-prone PCR
[9]. During such “morphing,” a large fraction of the se-head or tail fragments A, B, C, and D.

The authors investigated various oligonucleotide lected sequences is destroyed in hope of generating a
few better ones. Drawbacks are obvious: not only is acombinations and thereby demonstrated the general na-

ture of this mechanism. Finally, they assembled a ham- large portion of previously established fitness de-
stroyed, but also mutagenic PCR rarely produces newmerhead ribozyme by recombination from catalytically

inactive precursors and found it to be enzymatically properties, it mostly improves on a few chosen ones.
In contrast, recombination can combine two or moreactive (Figure 1). This demonstrates that RNA-directed

RNA recombination can lead to the creation of com- favorable preexisting sequence elements that have been
retained in separate RNA molecules from the originalpletely new molecular function, which is of particular

relevance to evolution in the hypothetical RNA world. pool into a single RNA sequence. More exciting yet, one
might combine pools from different selections to mergeWhile the intrinsic capability of RNA introns for recom-
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